skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zatezalo, Tanja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The coupled electronic states in two-dimensional (2D) and three-dimensional (3D) double quantum dot (DQD) systems are investigated using a phenomenological model applied to InAs/GaAs heterostructures. The single-band k · p effective potential approach previously proposed by our group is employed to numerically calculate the energy spectrum and spatial localization of a single electron, serving as an indicator of the coupling strength within the binary system. For identical quantum dots (QDs) in a DQD, the electronic states exhibit ideal coherence. We systematically vary the DQD geometry and the strength of the confinement potential (via an applied electric field) to examine the effects of symmetry breaking and the sensitivity of electron localization in both identical and nearly identical DQDs. Our results show that coherence in DQDs is highly sensitive to these subtle variations. This sensitivity can be harnessed to detect changes in the surrounding environment, such as fluctuations in chemical or electrical properties that affect the DQD system. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. We investigated the single-electron spectrum of an InAs/GaAs quantum dot (QD) using an effective potential model developed in previous studies. Our objective was to explore the limits of applicability of this model. We conducted numerical simulations, introducing a piezoelectric potential as a perturbation to the effective potential. The profile of this additional potential was derived from theoretical numerical studies presented in the literature. We analyzed the impact of variations in this profile within the framework of the perturbation theory. Our findings indicate that within a variation range of 25%, the effective potential model remains applicable. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. In this paper, we study the localization of an electron in a binary quantum system formed by a pair of quantum dots (QDs). The traditional theoretical consideration of such systems is limited to the symmetrical case when QDs in such double quantum dot (DQD) are assumed identical in all respects. In this paper, we model the effects of breaking QD similarities in a DQD by studying two-dimensional (2D) DQDs as a double quantum well (DQW). This is done by solving the Schrödinger equation, with parameters chosen to describe an InAs/GaAs heterostructure. We calculate the energy spectrum of the electron confinement and the spectral distribution of localized/delocalized spatial states. Both symmetric and asymmetric QW shapes are considered and their effects are compared. The effects of symmetry breaking are explained within the framework of the two-level system theory. We delineate the QW weak and strong coupling cases in DQW. In particular, we show that the coherence in ideal DQW is unstable in the case of a weak QW coupling. Within the framework of the proposed approach, a charge qubit realized on a DQD is discussed and, as an example, a qubit based on an almost ideal DQD is proposed. 
    more » « less